ENTROPY-EXPANSIVE MAPS

BY RUFUS BOWEN

Abstract. Let $f: X \to X$ be a uniformly continuous map of a metric space. f is called h-expansive if there is an $\varepsilon > 0$ so that the set $\Phi_{\varepsilon}(x) = \{y : d(f^n(x), f^n(y)) \le \varepsilon$ for all $n \ge 0\}$ has zero topological entropy for each $x \in X$. For X compact, the topological entropy of such an f is equal to its estimate using ε : $h(f) = h(f, \varepsilon)$. If X is compact finite dimensional and μ an invariant Borel measure, then $h_{\mu}(f) = h_{\mu}(f, A)$ for any finite measurable partition A of X into sets of diameter at most ε . A number of examples are given. No diffeomorphism of a compact manifold is known to be *not* h-expansive.

Let $f: X \to X$ be a homeomorphism of a metric space. For $\varepsilon > 0$ and $x \in X$ define

$$\Gamma_{\varepsilon}(x) = \{ y \in X : d(f^n(y), f^n(x)) \le \varepsilon \text{ for all } n \in \mathbb{Z} \}.$$

f is called expansive if for some ε these sets are as small as possible, i.e. if $\Gamma_{\varepsilon}(x) = x$ for all x. We are concerned with entropy and shall call f h-expansive provided that for some $\varepsilon > 0$ the $\Gamma_{\varepsilon}(x)$ are negligible in terms of entropy, i.e. if the topological entropy $h(f, \Gamma_{\varepsilon}(x)) = 0$ for all x.

We have two main results for h-expansive maps with X compact. First, the topological entropy satisfies $h(f) = h(f, \epsilon)$. Second, assuming X is finite dimensional, $h_{\mu}(f) = h_{\mu}(f, A)$ when μ is an f-invariant normalized Borel measure on X and A is a finite measurable partition of X into sets of diameter at most ϵ . Both these results are well known in case f is expansive (see [11] and [14] respectively). Arov [2] noted that the second statement was true for f an endomorphism of a torus and μ Haar measure when he calculated $h_{\mu}(f)$ for this case (see Example 1.2).

1. **Definitions and examples.** We now review the definition of topological entropy given in [4]. For X compact this definition was given independently by Dinaburg [7]; is related to the ε -entropy of Kolmogorov [12]. Topological entropy was defined first in [1].

Let $f: X \to X$ be uniformly continuous on the metric space X. For $E, F \subset X$ we say that $E(n, \delta)$ -spans F (with respect to f), if for each $y \in F$ there is an $x \in E$ so that $d(f^k(x), f^k(y)) \le \delta$ for all $0 \le k < n$. We let $r_n(F, \delta) = r_n(F, \delta, f)$ denote the minimum cardinality of a set which (n, δ) -spans F. If K is compact, then the continuity of f guarantees $r_n(K, \delta) < \infty$. For compact K we define

$$\bar{r}_f(K, \delta) = \limsup_{n \to \infty} \frac{1}{n} \log r_n(K, \delta)$$

Received by the editors January 20, 1971.

AMS 1970 subject classifications. Primary 28A65, 54H20.

Key words and phrases. Entropy, h-expansive.

and

$$h(f, K) = \lim_{\delta \to 0} \bar{r}_f(K, \delta)$$

(notice that $\bar{r}_f(K, \delta)$ increases as δ decreases). Finally let $h(f) = \sup_K h(f, K)$ where K varies over all compact subsets of X. If X is compact, then h(f) = h(f, X) and we write $h(f, \delta) = \bar{r}_f(X, \delta)$.

Let $\Phi_{\varepsilon}(x) = \bigcap_{n \geq 0} f^{-n}B_{\varepsilon}(f^n(x)) = \{y : d(f^n(x), f^n(y)) \leq \varepsilon \text{ for } n \geq 0\}$ and $h_f^*(\varepsilon) = \sup_{x \in X} h(f, \Phi_{\varepsilon}(x))$. f is called h-expansive if $h_f^*(\varepsilon) = 0$ for some $\varepsilon > 0$. In case f is a homeomorphism we set

$$\Gamma_{\varepsilon}(x) = \bigcap_{n \in \mathbb{Z}} f^{-n} B_{\varepsilon}(f^{n}(x))$$

and

$$h_{f,\text{homeo}}^*(\varepsilon) = \sup_{x \in X} h(f, \Gamma_{\varepsilon}(x)).$$

REMARK. For f a homeomorphism, $\Gamma_{\varepsilon}(x) \subset \Phi_{\varepsilon}(x)$ and so $h_{f, \text{homeo}}^*(\varepsilon) \leq h_f^*(\varepsilon)$. The definition of h-expansiveness for homeomorphisms mentioned in the introduction, namely $h_{f, \text{homeo}}^*(\varepsilon) = 0$, is actually equivalent to the above one in case X is compact. For in 2.3 we prove $h_f^*(\varepsilon) = h_{f, \text{homeo}}^*(\varepsilon)$ when X compact.

Example 1.0. Expansive maps.

EXAMPLE 1.1. If $f: \mathbb{R}^n \to \mathbb{R}^n$ is linear and d comes from a norm, then $h_f^*(\varepsilon) = 0$ for every ε .

Proof. f decomposes into a direct sum of linear maps $f=f_1 \oplus f_2 \colon E_1 \oplus E_2 \to E_1 \oplus E_2$ where f_1 's eigenvalues have norm at most 1 and f_2 's have norm greater than 1. If $u \in E_2$, $u \neq 0$, then $d(f_2^n(u), 0) \to \infty$ as $n \to \infty$. It follows that $\Phi_{\varepsilon}(0) \subset E_1$. But $h(f|E_1) = h(f_1) = 0$ by Theorem 15 of [4]. So $h(f, \Phi_{\varepsilon}(0)) = 0$. But $\Phi_{\varepsilon}(x) = \Phi_{\varepsilon}(0) + x$ and h(f, K+x) = h(f, K) for any compact set K.

EXAMPLE 1.2. An endomorphism f of a Lie group G is h-expansive.

Proof. Here we use a right invariant metric d. Then one checks $\Phi_{\varepsilon}(x) = \Phi_{\varepsilon}(e)x$ and h(f, Kx) = h(f, K) for compact K. So it is enough to see $h(f, \Phi_{\varepsilon}(e)) = 0$ for some ε . Now

$$T_eG \xrightarrow{df} T_eG$$

$$\downarrow \exp \qquad \qquad \downarrow \exp$$

$$G \xrightarrow{f} G$$

commutes and exp is a homeomorphism of a small neighborhood $B_{\alpha}(0) \subseteq T_e G$ onto a neighborhood of some $B_{\varepsilon}(e)$. Then $\Phi_{\varepsilon}(e,f) \subseteq \exp \Phi_{\alpha}(0,df)$ and since $f | \exp \Phi_{\alpha}(0,df)$ is a quotient of $df | \Phi_{\alpha}(0,df)$ one has

$$h(f, \Phi_{\varepsilon}(e, f)) \leq h(df, \Phi_{\sigma}(0, df)) = 0.$$

EXAMPLE 1.3. Suppose f is h-expansive and T a uniformly continuous map so that $(T \cdot f)^n = T_n \cdot f^n$ for $n \ge 0$ where the T_n are isometries. Then $T \cdot f$ is h-expansive.

Proof. One checks easily that $\Phi_{\varepsilon}(x, T \cdot f) = \Phi_{\varepsilon}(x, f)$ and that a set which (n, δ) -spans some $F \subset X$ with respect to f also (n, δ) -spans F with respect to f. It follows that

$$h(T \cdot f, \Phi_{\varepsilon}(x, T \cdot f)) \leq h(f, \Phi_{\varepsilon}(x, f)) = 0.$$

EXAMPLE 1.3*. Let G be a Lie group and for $g, u \in G$ define $L_g(u) = gu$ and $R_g(u) = ug$. If f is an endomorphism of G and $g \in G$, then the affine maps $R_g \cdot f$, $f \cdot R_g$, $L_g \cdot f$ and $f \cdot L_g$ are all h-expansive.

Proof. If we set $g_1 = g$ and $g_{n+1} = f(g_n)g$, one sees that $(R_g \cdot f)^n = R_{g_n} \cdot f^n$. As we use a right invariant metric, R_{g_n} is an isometry and 1.3 applies. Now $(L_g \cdot f)(u) = gf(u) = (gf(u)g^{-1})g = (R_g \cdot f^*)(u)$ where $f^*(u) = gf(u)g^{-1}$ is an endomorphism. We leave $f \cdot R_g$ and $f \cdot L_g$ to the reader.

EXAMPLE 1.4. Suppose H is a uniformly discrete subgroup of the Lie group G, i.e. G/H is compact and $\pi: G \to G/H$ given by $\pi(x) = xH$ is a covering. For f an endomorphism of G with $f(H) \subseteq H$ and $g \in G$ define f^* on G/H by $f^*(uH) = gf(u)H$. Then f^* is h-expansive.

Proof. For δ small enough π maps $B_{\delta}(x)$ isometrically onto $B_{\delta}(xH)$ for every x and $\pi\Phi_{\delta}(x, L_a \cdot f) = \Phi_{\delta}(xH, f^*)$. Then

$$h(f^*, \Phi_{\delta}(xH, f^*)) \leq h(L_q \cdot f, \Phi_{\delta}(x, L_q \cdot f)) = 0.$$

So f^* is h-expansive (see [4] for some more details).

EXAMPLE 1.5. For the case of X compact define the nonwandering set

$$\Omega(f) = \left\{ x \in X : \text{for every neighborhood } U \text{ of } x, U \cap \bigcup_{n>0} f^n(U) \neq \emptyset \right\}.$$

Then $f\Omega(f) \subset \Omega(f)$. If $f|\Omega(f)$ is h-expansive, then so is f. An example of this is one of Smale's Axiom A diffeomorphisms [15], where $f|\Omega(f)$ is expansive.

Proof. Splice together the proof of Theorem 2.4 in [5] and that of 2.2 below for $f|\Omega$, a=0 and x staying in a neighborhood of Ω up to time n.

EXAMPLE 1.6. Suppose $\Phi = {\varphi_t \colon X \to X}_{t \in \mathbb{R}}$ is a continuous flow on a compact metric space X. Suppose also that there are $\varepsilon > 0$ and s > 0 so that

$$\Gamma_{\varepsilon}(x,\Phi) = \{ y \in X : d(\varphi_{\varepsilon}(y), \varphi_{\varepsilon}(x)) \leq \varepsilon \text{ for all } t \in R \}$$
$$\subset \varphi_{[-s,s]}(x) = \{ \varphi_{\varepsilon}(x) : |r| \leq s \}.$$

Then each φ_t is h-expansive.

Proof. For any $t \in R$ there is a δ so that $d(x, y) \le \delta$ implies $d(\varphi_r(x), \varphi_r(y)) \le \varepsilon$ for all $|r| \le |t|$. Then

$$\Gamma_{\delta}(x, \varphi_t) \subset \Gamma_{\varepsilon}(x, \Phi) \subset \varphi_{[-s,s]}(x).$$

For $\beta > 0$ choose $\alpha > 0$ such that for all $x \in X$ and all $|r| \le \alpha$ we have $d(x, \varphi_r(x)) \le \delta$ (here we use X compact). Let K be a set of numbers so that every point in [-s, s] is

within α of one of them. Then $\{\varphi_u(x) : u \in K\}$ (n, δ) -spans $\varphi_{[-s,s]}(x)$ with respect to φ_t . Hence

$$r_n(\varphi_{1-s,s}(x), \delta, \varphi_t) \leq \operatorname{card} K$$

and

$$h(\varphi_t, \Gamma_{\delta}(x, \varphi_t)) \leq h(\varphi_t, \varphi_{[-s,s]}(x)) = 0.$$

EXAMPLE 1.6*. Let $\Phi = \{\varphi_t\}$ be one of Smale's Axiom A flows [15]. Then $\Phi | \Omega(\Phi)$ satisfies the condition of 1.6 [9]. By 1.5 and 1.6, each φ_t is h-expansive.

Problem. Find some differentiable maps which are *not h*-expansive.

2. Calculating topological entropy.

Assumption. For the remainder of the paper X is compact.

LEMMA 2.1. Suppose $0 = t_0 < t_1 < \cdots < t_{r-1} < t_r = n$ and $E_i(t_{i+1} - t_i, \alpha)$ -spans $f^{t_i}(F)$ for $0 \le i < r$. Then

$$r_n(F, 2\alpha) \leq \prod_{0 \leq i < r} \operatorname{card} E_i$$
.

Proof. For $x_i \in E_i$ write

$$V(x_0, \ldots, x_{r-1}) = \{x \in F : d(f^{t+t_i}(x), f^t(x_i)) \le \alpha \text{ for } 0 \le t < t_{i+1} - t_i, 0 \le i < r\}.$$

If $x, y \in V(x_0, ..., x_{r-1})$, then by the triangle inequality $d(f^s(x), f^s(y)) \le 2\alpha$ for $0 \le s < n$. Since $F = \bigcup V(x_0, ..., x_{r-1})$ we get an $(n, 2\alpha)$ -spanning set for F by taking one element from each nonempty $V(x_0, ..., x_{r-1})$.

PROPOSITION 2.2. Let $a = h_f^*(\varepsilon)$ or $h_{f,\text{homeo}}^*(\varepsilon)$ (in case f is a homeomorphism). Then for every $\delta > 0$ and $\beta > 0$ there is a c such that

$$r_n\left(\bigcap_{k=0}^{n-1} f^{-k}B_{\varepsilon}(f^k(x)), \delta\right) \leq ce^{(\alpha+\beta)n}$$

for all $x \in X$.

Proof. We do the case where f is a homeomorphism and $a = h_{f,\text{homeo}}^*(\varepsilon)$. The case where $a = h_f^*(\varepsilon)$ is slightly simpler and we leave the necessary modifications to the reader.

For each $y \in X$ pick m(y) so that $a + \beta \ge (1/m(y)) \log \operatorname{card} E(y)$ where E(y) is a set which $(m(y), \frac{1}{4} \delta)$ -spans $\Gamma_{\varepsilon}(y)$. Then $U(y) = \{w \in X : \exists z \in E(y) \text{ such that } d(f^k(w), f^k(z)) < \frac{1}{2} \delta$ for all $0 \le k < m(y)\}$ is an open neighborhood of the compact set $\Gamma_{\varepsilon}(y)$. Let $S_M = \bigcap_{|j| \le M} f^{-j} B_{\varepsilon}(f^j(y))$. Then $S_0 \supset S_1 \supset \cdots$ is a decreasing chain of compact sets with intersection $\Gamma_{\varepsilon}(y)$; hence there is an integer N(y) so that $S_{N(y)} \subset U(y)$. Consider the compact sets $W_y = \bigcap_{|j| \le N(y)} f^{-j} B_y(f^j(y))$. Then $\bigcap_{y > \varepsilon} W_y = W_{\varepsilon} = S_{N(y)} \subset U(y)$; hence, $W_y \subset U(y)$ for some $y > \varepsilon$. Let V(y) be a neighborhood of y such that $d(f^j(u), f^j(y)) < y - \varepsilon$ for $|j| \le N(y)$ when $u \in V(y)$. Then $B_{\varepsilon}(f^j(u)) \subset B_y(f^j(y))$ and

$$\bigcap_{|j| \leq N(y)} f^{-j} B_{\varepsilon}(f^{j}(u)) \subset U(y).$$

Let $V(y_1), \ldots, V(y_s)$ cover the compact space X and

$$N = \max \{N(y_1), \dots, N(y_s), m(y_1), \dots, m(y_s)\} + 1.$$

Consider now any $x \in X$ and $F_n = \bigcap_{j=0}^{n-1} f^{-j} B_{\varepsilon}(f^j(x))$. For any $t \in [N, n-N]$, $f^t(x)$ is in some $V(y_i)$ and

$$f^{t}(F_{n}) = \bigcap_{k=-t}^{n-t-1} f^{-k}B_{\varepsilon}(f^{k}(f^{t}(x))) \subset \bigcap_{|k| \leq N(y_{1})} f^{-k}B_{\varepsilon}(f^{k}(f^{t}(x))) \subset U(y_{i}).$$

Now $E(y_i)$ $(m(y_i), \frac{1}{2}\delta)$ -spans $U(y_i)$, so it does $f^t(F_n)$ also.

We shall define integers $0 = t_0 < t_1 < \cdots < t_r = n$. If $n \le N$, let r = 1 and $t_1 = n$. If n > N, take $t_1 = N$ and pick $V(y_{i_1})$ containing $f^{t_1}(x)$. Suppose we have chosen t_1, \ldots, t_k and y_{i_1}, \ldots, y_{i_k} (with $t_k < n$). If $t_k > n - N$, then set r = k + 1 and $t_r = N$. If $t_k \le n - N$, then set $t_{k+1} = t_k + m(y_{i_k}) < n$ and choose $V(y_{i_{k+1}})$ containing $f^{t_{k+1}}(x)$. Eventually this process stops.

Let K be a set which $(N, \frac{1}{2}\delta)$ -spans X. Then $K(t_1 - t_0, \frac{1}{2}\delta)$ -spans F_n and also $(t_r - t_{r-1}, \frac{1}{2}\delta)$ -spans $f^{t_{r-1}}(F_n)$. From the way the t_k 's and y_{i_k} 's were chosen we see that, for 0 < k < r - 1, $E(y_{i_k})(t_{k+1} - t_k, \frac{1}{2}\delta)$ -spans $f^{t_k}(F_n)$. Lemma 2.1 applies to give

$$r_n(F_n, \delta) \le (\operatorname{card} K)^2 \prod_{0 < k < r - 1} \operatorname{card} E(y_{i_k})$$

 $\le (\operatorname{card} K)^2 \prod_{0 < k < r - 1} \exp((a + \beta)(n(y_{i_k}))) \le (\operatorname{card} K)^2 e^{(a + \beta)n}.$

COROLLARY 2.3. If f is a homeomorphism, then $h_{f,\text{homeo}}^*(\varepsilon) = h_f^*(\varepsilon)$.

Proof. Let $a = h_{f,\text{homeo}}^*(\varepsilon)$. Fixing β , δ the proposition gives us $r_n(\Phi_{\varepsilon}(x), \delta) \le ce^{(a+\beta)n}$. Hence $\bar{r}_f(\Phi_{\varepsilon}(x), \delta) \le a + \beta$ and $h(f, \Phi_{\varepsilon}(x)) \le a + \beta$. As $\beta > 0$ was arbitrary, $h(f, \Phi_{\varepsilon}(x)) \le a$ and $h_f^*(\varepsilon) \le a = h_{f,\text{homeo}}^*(\varepsilon)$. The reverse inequality we noted before.

THEOREM 2.4. $h(f) \le h(f, \varepsilon) + h_f^*(\varepsilon)$. In particular, $h(f) = h(f, \varepsilon)$ if ε is an h-expansive constant for f.

Proof. Let $\delta > 0$ and $\beta > 0$. Let $E_n(n, \varepsilon)$ -span X, i.e.

$$X = \bigcup_{x \in E_n} \bigcap_{k=0}^{n-1} f^{-k} B_{\varepsilon}(f^k(x)).$$

By Proposition 2.2 there is a constant c so that each of the sets in the above union can be (n, δ) -spanned by using at most $ce^{(a+\beta)n}$ elements (where $a=h_f^*(\varepsilon)$). Hence $r_n(X, \delta) \leq \operatorname{card} E_n ce^{(a+\beta)n} \leq r_n(X, \varepsilon) ce^{(a+\beta)n}$. It follows that $h(f, \delta) \leq h(f, \varepsilon) + a + \beta$. Letting $\beta \to 0$, $h(f, \delta) \leq h(f, \varepsilon) + a$. Now letting $\delta \to 0$ we get our result.

If $h_f^*(\varepsilon) = 0$, then $h(f) \le h(f, \varepsilon)$. But $h(f) \ge h(f, \varepsilon)$ from the definition of h(f); hence $h(f) = h(f, \varepsilon)$.

COROLLARY 2.5. If $h(f) = h(f, \varepsilon) + h_f^*(\varepsilon)$, then $(1/n) \log r_n(X, \varepsilon) \to h(f, \varepsilon)$. In particular, if $h_f^*(\varepsilon) = 0$, then $(1/n) \log r_n(f, \varepsilon) \to h(f)$.

Proof. Otherwise there is an increasing sequence of integers $\{n_k\}$ so that $(1/n_k) \log r_{n_k}(X, \varepsilon) \to b < h(f, \varepsilon)$. Let $a = h_f^*(\varepsilon)$. Then h(f) > a + b and, for $\gamma > 0$

small enough, $h(f, \gamma) > a + b$. Choose $\beta > 0$ so that $h(f, \gamma) > a + b + \beta$. For some c, as in the proof of the theorem, we have $r_{n_k}(X, \frac{1}{2}\gamma) \leq r_{n_k}(X, \varepsilon)c \exp((a+\beta)n_k)$. So

$$\limsup_{k\to\infty}\frac{1}{n_k}\log r_{n_k}(X,\tfrac{1}{2}\gamma)\leq b+a+\beta< h(f,\gamma).$$

Choose R so that $(1/R) \log r_R(X, \frac{1}{2}\gamma) = \alpha < h(f, \gamma)$. This means there is an $(R, \frac{1}{2}\gamma)$ -spanning set for X with $e^{R\alpha}$ elements. By Lemma 2.1 (using $t_k = kR$) one gets $r_{Rp}(X, \gamma) \le (e^{R\alpha})^p$. For $0 \le q \le R$,

$$r_{Rp+q}(X, \gamma) \leq r_{R(p+1)}(X, \gamma) \leq e^{R\alpha(p+1)}$$

Hence

$$h(f,\gamma) = \limsup_{n=Rp+q\to\infty} \frac{1}{n} \log r_n(X,\gamma) \le \limsup_{p\to\infty} \frac{(p+1)R\alpha}{Rp} = \alpha.$$

But we chose $\alpha < h(f, \gamma)$, a contradiction.

If $h_f^*(\varepsilon) = 0$, then $h(f) = h(f, \varepsilon)$ by the theorem, and so the first statement applies. Remarks. For expansive homeomorphisms the second part of 2.4 was proved in [11] and the second part of 2.5 in [6]. In the original definition of topological entropy using open covers [1] certain limits existed whose analogues might not exist when one uses spanning sets. 2.5 is a technical result giving us conditions which insure that these limits exist. It has an application in counting periodic orbits of the Axiom A diffeomorphisms and flows of Smale (see [6]).

3. **Measures.** We continue to assume $f: X \to X$ is continuous and X a compact metric space. μ denotes a Borel measure on X with $\mu(X) = 1$ which is f-invariant, i.e. $\mu(f^{-1}(E)) = \mu(E)$ for Borel sets E.

We call $A = \{A_1, \ldots, A_r\}$ a (finite) Borel partition provided the A_i are pairwise disjoint Borel sets whose union is X. (Note that any finite μ -measurable partition is μ -equivalent to a Borel partition.) We write

$$H_{\mu}(A) = \sum_{i=1}^{r} -\mu(A_i) \log \mu(A_i).$$

If A, B are two Borel partitions, so is $A \vee B = \{A \cap B : A \in A, B \in B\}$. Setting $A^n = A_f^n = A \vee f^{-1}A \vee \cdots \vee f^{-(n-1)}A$, one defines the entropies (of Kolmogorov and Sinai, see [3])

$$h_{\mu}(f, A) = \lim_{n \to \infty} \frac{1}{n} H_{\mu}(A^n)$$
 and $h_{\mu}(f) = \sup_{A} h(f, A)$.

An important device for calculating $h_{\mu}(f)$ in some examples is Goodwyn's theorem [8]: $h_{\mu}(f) \leq h(f)$. We shall use his ideas to prove a stronger statement for the case of X finite dimensional: $h_{\mu}(f) \leq h_{\mu}(f, A) + h_{f}^{*}(\varepsilon)$ where A is a finite Borel partition with diam $A = \max \{ \text{diam } A : A \in A \} \leq \varepsilon$. This reduces to Goodwyn's theorem when we take $A = \{X\}$ and $\varepsilon = \text{diam } X$. If ε is an h-expansive constant for f, it gives $h_{\mu}(f) = h_{\mu}(f, A)$.

LEMMA 3.1. If $a_1, ..., a_n \ge 0$ and $s = \sum_{i=1}^n a_i \le 1$, then

$$\sum -\mu(a_i) \log \mu(a_i) \leq s(\log n - \log s).$$

Proof. This is a well-known case of Jensen's inequality [13, pp. 11–12].

LEMMA 3.2. Let A_1, A_2, \ldots be finite Borel partitions of X with diam $A_m \to 0$. Then $h_u(f, A_m) \to h_u(f)$.

Proof. This is a slight variation of a well-known result of Rohlin. Looking at 6.3, 8.6 and 9.5 of [16], one sees that our lemma is implied by the following statement:

Given a Borel partition $\beta = \{B_1, \ldots, B_n\}$ and $\varepsilon > 0$, then for large m we can find a partition $\alpha = \{C_1, \ldots, C_n\}$ coarser than A_m (i.e. each C_i is the union of members of A_m) so that $\mu(B_i \triangle C_i) < \varepsilon$ for $1 \le i \le n$.

We now prove this statement. Since μ is a Borel measure, one can choose compact sets $K_i \subset B_i$ with $\mu(B_i \setminus K_i) < \varepsilon/n$. Choose $\delta > 0$ so that $d(K_i, K_j) > \delta$ for $i \neq j$ and suppose diam $A_m < \delta$. Form $\alpha = \{C_1, \ldots, C_n\}$ coarser than A_m by putting $A \in A$ into

- (a) C_i if $A \cap K_i \neq \emptyset$ or
- (b) C_k if $A \cap K_i = \emptyset$ for all i.

This makes sense, for if $x \in A \cap K_i$ and $y \in A \cap K_j$, then

$$d(K_i, K_j) \le d(x, y) \le \text{diam } A < \delta$$

and so i = j.

Clearly $C_i \supset K_i$. Hence $\mu(B_i \backslash C_i) \leq \mu(B_i \backslash K_i) < \varepsilon/n$. Since $C_i \backslash B_i \subset \bigcup_{j \neq i} (B_j \backslash C_j)$, $\mu(C_i \backslash B_i) < (n-1)\varepsilon/n$. Thus $\mu(B_i \triangle C_i) < \varepsilon$.

REMARK. We used 3.2 in [4] but stated there (in the introduction) instead a stronger form—which we cannot prove.

Suppose now that \mathfrak{B} is any finite cover of X. For $E \subseteq X$ let

$$F(E, \mathfrak{B}) = \{B \in \mathfrak{B} : B \cap E \neq \emptyset\}.$$

We give a very slight modification of Proposition 2 of [8].

LEMMA 3.3. Let \mathfrak{B} be a finite cover of X by closed sets such that each point $x \in X$ lies in at most m elements of \mathfrak{B} . There is a $\delta > 0$ so that card $F(E, \mathfrak{B}^n) \leq r_n(\delta, E)m^n$ for all $E \subset X$, $n \geq 0$.

Proof. For each $x \in X$ choose a neighborhood U_x intersecting at most m elements of \mathfrak{B} . Let U_{x_1}, \ldots, U_{x_r} cover X and $\delta > 0$ be a Lebesgue number for this open cover. For each n let K_n be a set which (n, δ) -spans E and has $r_n(E, \delta)$ elements. For each $\beta \in F(E, \mathfrak{B}_n^n)$ pick $p(\beta) \in E \cap \beta$ and $q(\beta) \in K_n$ so that $d(f^t(q(\beta)), f^t(p(\beta))) \le \delta$ for $0 \le t \le n$. If $\beta = \bigcap_{t=0}^{n-1} B_{i_t}$, $B_{i_t} \in \mathfrak{B}$, then $f^t p(\beta) \in B_{\delta}(f^t q(\beta)) \cap B_{i_t} \ne \emptyset$. Since $B_{\delta}(f^t q(\beta))$ lies inside some U_{x_f} , for a given $q(\beta)$ there are at most m possibilities for B_{i_t} . It follows that, for $z \in K_n$, card $q^{-1}(z) \le m^n$. Hence card $F(E, \mathfrak{B}^n) \le (\operatorname{card} K_n) m^n$.

DEFINITION. For A, B two Borel partitions let

$$b(A, B) = \max_{A \in A} \operatorname{card} F(A, B).$$

Lemma 3.4. $h_{\mu}(f, A \vee B) \leq h_{\mu}(f, A) + \liminf_{n \to \infty} \frac{1}{n} \log b(A^n, B^n).$

Proof. Since $(A \vee B)^n = A^n \vee B^n$,

$$H_{\mu}((A \vee B)^n) = \sum_{\alpha \in A^n} \sum_{\beta \in F(\alpha, B^n)} -\mu(\alpha \cap \beta) \log \mu(\alpha \cap \beta).$$

By Lemma 3.1

$$\sum_{\beta \in F(\alpha, \mathbf{B}^n)} -\mu(\alpha \cap \beta) \log \mu(\alpha \cap \beta) \leq \mu(\alpha) (\log b(\alpha, \mathbf{B}^n) - \log \mu(a))$$

and so

$$H_{\mu}((A \vee B)^n) \leq \log b(A^n, B^n) + H_{\mu}(A^n).$$

Divide by n and let $n \to \infty$.

THEOREM 3.5. Assume X is finite dimensional. Let A be a Borel partition of X with diam $A \le \varepsilon$. Then $h_{\mu}(f) \le h_{\mu}(f, A) + h_{f}^{*}(\varepsilon)$ for any normalized f-invariant Borel measure μ . If ε is an h-expansive constant for f, then $h_{\mu}(f) = h_{\mu}(f, A)$.

Proof. Say dim X=m-1. Then for each $\gamma > 0$ we can find a finite closed cover $\mathfrak{B} = \mathfrak{B}(\gamma)$ with diameter $<\gamma$ and no point of X in more than m elements of \mathfrak{B} (see [10]). Let M be a fixed positive integer.

Let $B = \{B_1^*, \ldots, B_r^*\}$ be a Borel partition of X where $B_i^* \subset B_i$ and $\mathfrak{B} = \{B_1, \ldots, B_r\}$. We consider f^M with respect to the partition $B \vee A_f^M$. If $\alpha \in (A_f^M)_f^n$ and $x \in \alpha$, then $\alpha \subset \bigcap_{s=0}^{nM-1} f^{-s} B_{\varepsilon}(f^s(x))$. Let $\delta > 0$ be as in Lemma 3.3 and $\beta > 0$ arbitrary. By 2.2 we have

$$r_n(\alpha, \delta, f^M) \leq r_{Mn}(\alpha, \delta, f) \leq ce^{(a+\beta)nM}$$

where $a = h_i^*(\varepsilon)$. Using Lemma 3.3 we get (the first inequality is obvious)

card
$$F(\alpha, \mathbf{B}_{fM}^{n_M}) \leq \operatorname{card} F(\alpha, \mathfrak{B}_{fM}^{n_M}) \leq c e^{(\alpha + \beta)nM} m^n$$

Applying Lemma 3.4,

$$h(f^M, \mathbf{B} \vee A_t^M) \leq h_u(f^M, A_t^M) + M(a+\beta) + \log m.$$

Letting $\gamma \to 0$, diam $\mathbf{B} \vee \mathbf{A}_{\ell}^{M} \leq \text{diam } \mathbf{B} \leq \text{diam } \mathfrak{B}(\gamma) \to 0$ and so by Lemma 3.2

$$h_n(f^M) \leq h_n(f^M, A_f^M) + M(a+\beta) + \log m$$
.

Now $h_{\mu}(f^{M}) = Mh_{\mu}(f)$ and $h_{\mu}(f^{M}, A_{f}^{M}) = Mh_{\mu}(f, A)$. So

$$h_{\mu}(f) \leq h_{\mu}(f, A) + a + \beta + \frac{1}{M} \log m.$$

Letting $\beta \to 0$ and then $M \to \infty$, we get our result.

REFERENCES

- 1. R. Adler, A. Konheim and M. McAndrew, *Topological entropy*, Trans. Amer. Math. Soc. 114 (1965), 309-319. MR 30 #5291.
- 2. D. Arov, Calculation of entropy for a class of group endomorphisms, Zap. Meh.-Mat. Fak. Har'kov. Gos. Univ. i Har'kov. Mat. Obšč. (4) 30 (1964), 48-69. (Russian) MR 35 #4368.
 - 3. P. Billingsley, Ergodic theory and information, Wiley, New York, 1965. MR 33 #254.
- 4. R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1970), 401-414.
- 5. ——, Topological entropy and Axiom A, Proc. Sympos. Pure Math., vol. 14, Amer. Math. Soc., Providence, R. I., 1970, pp. 23-41. MR 41 #7066.
- 6. ——, Periodic points and measures for Axiom A diffeomorphisms, Trans. Amer. Math. Soc. 154 (1971), 377-397.
- 7. E. Dinaburg, A correlation between topological entropy and metric entropy, Dokl. Akad. Nauk SSSR 190 (1970), 19-22 = Soviet Math. Dokl. 11 (1969), 13-16. MR 41 #425.
- 8. L. Goodwyn, Topological entropy bounds measure theoretic entropy, Proc. Amer. Math. Soc. 23 (1969), 679-688. MR 40 #299.
 - 9. C. Pugh and M. Shub, The Ω -stability theorem for flows, Invent. Math. 11 (1970), 150–158.
- 10. W. Hurewicz and H. Wallman, *Dimension theory*, Chap. 5, Princeton Univ. Press, Princeton, N. J., 1941. MR 3, 312.
- 11. H. Keynes and J. Robertson, Generators for topological entropy and expansiveness, Math. Systems Theory 3 (1969), 51-59. MR 40 #300.
- 12. A. Kolmogorov and V. Tihomirov, ε-entropy and ε-capacity of sets in function spaces, Uspehi Mat. Nauk 14 (1959), no. 2 (86), 3-86; English transl., Amer. Math. Soc. Transl. (2) 17 (1961), 277-364. MR 22 #2890; MR 23 #A2031.
- 13. W. Parry, Entropy and generators in ergodic theory, Benjamin, New York, 1969. MR 41 #7071.
- 14. Ja. G. Sinaĭ, On the concept of entropy for a dynamic system, Dokl. Akad. Nauk SSSR 124 (1959), 768-771. (Russian) MR 21 #2036a.
- 15. S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817. MR 37 #3598.
- 16. V. Rohlin, Lectures on the entropy theory of transformations with invariant measure, Uspehi Mat. Nauk 22 (1967), no. 5 (137), 3-56=Russian Math. Surveys 22 (1967), no. 5, 1-52. MR 36 #349.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720